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One-pot synthesis of 2-substituted furo[3,2-c]quinolines
via tandem coupling–cyclization under Pd/C-copper catalysisI
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Abstract—Pd/C–Cu catalyzed coupling reactions of 3-iodo-1H-quinolin-4-ones with a variety of terminal alkynes afforded
furo[3,2-c]quinolines regioselectively in good to excellent yields. 3-Alkynyl quinolones were isolated under the same reaction
conditions when the nitrogen of 3-iodo-1H-quinolin-4-one was substituted with an alkyl group.
� 2006 Elsevier Ltd. All rights reserved.
Furoquinoline derivatives are of particular interest
because they are isomers of the known family of
furo[2,3-b]quinoline alkaloids, which possess a broad
range of biological properties such as antiviral, antimi-
crobial, and antiplatelet aggregation activity.1 Recently,
linear and angular furoquinolinones (A and B, Fig. 1)
have shown promising blocking activities of the volt-
age-gated potassium channel Kv1.3.2 This channel is
considered to be a novel pharmacological target for
immunosuppressive therapy3 and therefore potent, spe-
cific Kv1.3 inhibitors have the potential to be of utility
in transplantation, autoimmune disease, and inflamma-
tion therapy.3a

Among the many methods reported2,4–14 for the synthe-
sis of furoquinoline derivatives, a common strategy
involves the construction of a quinoline ring possessing
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Figure 1.
an appropriate carbon chain at the C-3 position, which
is then modified into the furan ring depending on the
presence of an oxygen substituent at the C-2 or C-4 posi-
tions. A major drawback of this protocol is that once the
quinoline ring has been constructed, incorporation of a
carbon chain at C-3 through electrophilic aromatic sub-
stitution is difficult. While improved12c and alternative
methodologies15–17 have been reported to overcome this
problem, a general methodology for the synthesis of
angular furoquinolines has not been reported so far.

Recently, the construction of furan rings18 fused with
benzene or other six-membered heterocycles via palla-
dium-catalyzed annulation of alkynes19 has attracted
considerable interest. For example, furopyrimidine
derivatives have been synthesized via palladium- or cop-
per-catalyzed 5-endo-dig cyclization of 5-alkynyluridines
involving the C-4 pyrimidine oxygen and the acetylenic
bond.20,21 The use of a similar strategy has been revealed
in the synthesis of linear furoquinolines.22 However,
most of these processes require isolation of the Sono-
gashira product followed by cyclization in the next step.
While the use of copper acetylide under Castro reaction
conditions afforded linear and angular quinolines in low
yields (26–35%),23 this methodology also suffered from
a cumbersome, preparative procedure as well as the
stoichiometric use of an organometallic reagent, the
use of pyridine as a base and harsh reaction conditions.
In connection with our studies on the use of halogenated
enones of type –C@C(X)CO– (where X = I or Br,
Fig. 2) under modified Sonogashira conditions, we have
recently reported a new and one-pot synthesis of
3-enynyl(thio)flavones along with their 3-alkynyl
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Table 1. The effect of palladium catalysts on the coupling reaction of
3-iodo-2-phenyl quinolin-4-one with 2-methyl-3-butyn-2-ol in DMFa

RN
H

O

C6H5

I

N C6H5

O

R

N
H

O

C6H5

2a

Pd-catalyst,  CuI

Et3N, DMF

3a 1a

+

R = C(OH)Me2

Entry Pd-catalyst Temp (�C); time (h) Yield (%)c

3ab 1ab

1d 10% Pd/C–PPh3 75–80; 3 70 11
2 Pd(PPh3)4 75–80; 2 85 n.d.
3 Pd(PPh3)2Cl2 75–80; 2 80 n.d.
4e 10% Pd/C–PPh3 75–80; 3 34 n.d.
5f 10% Pd/C–PPh3 75–80; 3 n.d. 17
6 10% Pd/C 80; 3 22 n.d.

n.d. = not detected.
a Reaction conditions: 2a (1.0 equiv), terminal alkyne (2.0 equiv), Pd-

catalyst (0.03 equiv), CuI (0.06 equiv), Et3N (5 equiv) in DMF under
N2 atmosphere.

b Identified by 1H NMR, 13C NMR, IR, and mass spectroscopy.
c Isolated yields.
d The reaction was carried out using a 1:4:2 ratio of Pd/C–PPh3–CuI.
e THF was used in the place of DMF.
f CuI was not used.
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analogues.24 In continuation of this work, we now
report the use of 2-substituted 3-iodo-1H-quinolin-4-
one (Fig. 2, Z = NR 0, R 0 = H or CH3) as a starting
point to synthesize a variety of angular furoquinolines.
Palladium-catalyzed alkynylation of aryl or heteroaryl
rings (the Sonogashira coupling)25a has proved to be a
powerful tool for the C–C bond formation;25b however,
an one-pot process involving Sonogashira type coupling
followed by the electrophilic or transition-metal-medi-
ated cyclization of the resulting alkynes possessing a
suitable nucleophilic group in proximity to the triple
bond has now emerged as a versatile and efficient route
to various substituted heterocyclic systems.26 Typically
these coupling–cyclization reactions are carried out
using a palladium catalyst [e.g., Pd(PPh3)4, (PPh3)2-
PdCl2, etc.] and a copper salt as co-catalyst in the
presence of an amine base. While the use of Pd/C–
CuI–PPh3 as a less expensive catalytic system has been
studied extensively27 its application in coupling–cycliza-
tion is not common.28 Due to our interest in Pd/C-based
methodologies,27a,28 we now report the first palladium
(on charcoal)-copper mediated synthesis of diverse
2-substituted furo[3,2-c]quinolines.

To initiate our studies, we first prepared a series of
3-iodoquinolin-4-ones 2a–d in good yields through
iodination of the corresponding quinolin-4-ones29 using
iodine and ceric ammonium nitrate (CAN) in aceto-
nitrile at 70–80 �C (Scheme 1).30a

Firstly, 3-iodo-2-phenyl-1H-quinolin-4-one 2a was trea-
ted with 2.0 equiv of 2-methyl-3-butyn-2-ol in dimethyl-
formamide (DMF) in the presence of 10% Pd/C
(0.03 equiv), PPh3 (0.12 equiv), CuI (0.06 equiv), and tri-
ethylamine (5 equiv) under a nitrogen atmosphere to
give 2-(4-phenylfuro[3,2-c]quinolin-2-yl)-2-ol 3a in 70%
yield along with a minor quantity of de-iodinated prod-
uct (Table 1, entry 1). The use of Pd(PPh3)4 or
Pd(PPh3)2Cl2 in the place of Pd/C–PPh3 improved the
yield of 3a to 80–85% and no de-iodinated product
was detected (Table 1, entries 2 and 3). Notably, the
use of 2b in the presence of 10%Pd/C–PPh3–CuI as a
catalyst afforded the desired product in 83% yield (Table
2, entry 1).30b Encouraged by this result and Pd/C being
N

O
R2

R3

R1
N

O
R2

R3

I

R1
MeCN, 70-80 oC

I2 / (NH4)2Ce(NO3)6

1a R1 = H; R2 = H; R3 = C6H5
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Scheme 1. Preparation of 3-iodoquinolin-4-one derivatives.
a cheaper source of palladium catalyst, we continued
our studies using only this catalyst system. The results
of our studies are summarized in Table 1. DMF was
used as a solvent, other solvents such as THF (Table
1, entry 4) and acetonitrile were found to be less effec-
tive, perhaps due to the poor solubility of 2a in these sol-
vents. The formation of only de-iodinated product
(Table 1, entry 5) in the absence of copper salt high-
lighted the crucial role of CuI in this coupling–cycliza-
tion process. The absence of PPh3 resulted in a poor
yield of 3a (Table 1, entry 6).

In view of the encouraging results obtained using 2b, we
decided to explore the generality and scope of this cou-
pling–cyclization process. Thus 2b was treated with a
variety of terminal alkynes under the conditions
described earlier (Table 1, entry 1) and the results are
summarized in Table 2. Good yields of the desired
furo[3,2-c]quinolines 4 were obtained irrespective of
the nature of terminal alkynes used (Table 2, entries
1–5). Aryl, alkyl, and hydroxy groups present in the
terminal alkynes were well tolerated. Similarly, 2a was
treated with a number of terminal alkynes to afford
the corresponding furo[3,2-c]quinolines 3 in 67–72%
yields (Table 2, entries 6–9). The use of 3-iodo-2-thien-
2-yl-1H-quinolin-4-one 2c also afforded the desired
product albeit in moderate yield (Table 2, entry 10).
Notably, in contrast to the earlier observations22a,b

no 3-alkynyl quinolone was isolated in our examples.
However, de-iodinated product (1a or 1c) was isolated,
at least in 10–12% yields, when 2a or 2c was used. This
was not observed when Pd(PPh3)4 was employed in
place of Pd/C–PPh3 and better yields (>80%) of 3 were
obtained.

The key features of the present tandem coupling–cycli-
zation process are the transition-metal-mediated activa-



Table 2. Pd/C mediated synthesis of 2-substituted furo[3,2-c]quinolinesa
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Table 2 (continued)

Entry 3-Iodoquinoline-4-one (2) Alkyne Time (h) Productb (3/4) Yield (%)c

9 2a „—Ph 3

N

O
C6H5

3d

67

10 2c „—Ph 3

N

O
C6H5

S

3e

60

a All reactions were carried out by using 2 (1.0 equiv), terminal alkyne (2.0 equiv), 10% Pd/C (0.03 equiv), PPh3 (0.12 equiv), CuI (0.06 equiv), Et3N
(5 equiv) in DMF at 75–80 �C.

b Identified by 1H NMR, 13C NMR, IR, and mass spectroscopy.
c Isolated yields.
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5a; R = CMe2OH (60%)
5b; R = C6H5 (70%) 
5c; R = C6H3(OMe)-m,p (65%)

Scheme 2. Preparation of 2-substituted 9-methyl-9H-furo[2,3-b]-
quinolin-4-ones 5.

N
H

O

R3

I

N
H

R3

O

Pd(0) Pd I R

X

N
H

R3

O

Pd R

N R3

O R

Cu

H
N R3

O

R

-Cu(I)

2

3 or 4

CuI

Pd(0)

Scheme 3. Proposed mechanism for the tandem coupling–cyclization
process.
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Scheme 4. Effect of neighboring group on the coupling of X with a
terminal alkyne.
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tion of the triple bond of the 3-alkynyl quinoline gener-
ated in situ followed by an intramolecular attack of the
oxygen on the activated triple bond with subsequent
proton transfer and release of the metal ion to give the
desired furoquinoline (see later for mechanistic discus-
sion). The NH of the quinolone ring has a critical role
in the cyclization step and perhaps facilitated the prefer-
ential participation of the C-4 quinoline oxygen over the
ester when 2b was used as the halide component. This is
particularly interesting as a Lewis acid mediated cycliza-
tion of 2-ethynylbenzoic acid ester leading to a 3-substi-
tuted isocoumarin has been reported.31 However, to
assess the role of the N-hydrogen, we treated 3-iodo-1-
methyl-4-oxo-1,4-dihydroquinoline-2-carboxylic acid
methyl ester 2d with terminal alkynes under the same
conditions. Only 3-alkynyl quinolones 5 were isolated
in these cases as a result of normal Sonogashira coupling
and no formation of furoquinoline was observed, even
in trace amounts (Scheme 2).

A plausible reaction mechanism is depicted in Scheme 3.
The Pd(0) species generated in situ from Pd/C and PPh3

catalyzes the coupling of 3-iodoquinolin-4-one 2 with
copper(I) acetylide (generated in situ from the terminal
alkyne) via intermediate X leading to the 3-alkynyl quin-
olin-4-one. This subsequently affords the corresponding
furoquinoline (3 or 4) via activation of the triple bond
through its complexation with the copper(I) salt fol-
lowed by intramolecular cyclization20,32 with regenera-
tion of the Cu(I) catalyst.33 The better yields observed
in the case of 2b perhaps resulted from an intramolecu-
lar coordination of the neighboring carbonyl oxygen to
the palladium during the iodide displacement step
(Scheme 4).
In conclusion, we have shown that 2-substituted
3-iodoquinolones can react with a variety of terminal
alkynes under the palladium/copper catalysis. These
reactions proceed under mild conditions and afford
furo[3,2-c]quinolines with remarkable regioselectivity
irrespective of the nature of the substituent present at
C-2 of the starting quinolone. The presence of an ester
moiety at this position leads to the best yields of prod-
ucts. The present one-pot and regioselective synthesis
of 2-substituted furo[3,2-c]quinolines via Pd/C based
methodology does not involve the use of expensive
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reagents or catalysts and therefore permits a new and
practical access to angular furoquinolines. The ongoing
work seeks to expand the scope of this process to the
synthesis of compounds of pharmacological interest.
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